Trang blog dành cho trao đổi sự đời ,trao đổi các bài viết về học và làm Toán
Nói nhỏ :
Chủ Nhật, 16 tháng 4, 2017
Thứ Bảy, 15 tháng 4, 2017
Tìm hiểu về số Mersenne
What
is a Mersenne Prime Number?
A Mersenne Number is a number that is equal to
one less than a power of 2, or (2^n-1) where n is any positive integer.
Mersenne numbers are named after Marin Mersenne, a French monk.
A Mersenne Prime Number is a prime number that
happens to also be a Mersenne Number. A Mersenne Prime Number will always have
a value equal to (2^n-1) where n is one of a selected list of positive prime
numbers.
When I discovered that there was a formula for
"Mersenne" prime numbers, I wrote another program for that, which
gave me these results and is listed later on this page:
2^2-1 = 3
2^3-1 = 7
2^5-1 = 31
2^7-1 = 127
2^13-1 = 8191
2^17-1 = 131,071
2^19-1 = 524,287
2^31-1 = 2,147,483,647
2^3-1 = 7
2^5-1 = 31
2^7-1 = 127
2^13-1 = 8191
2^17-1 = 131,071
2^19-1 = 524,287
2^31-1 = 2,147,483,647
As mentioned above, every known "perfect
number" can be generated from a "Mersenne prime". If (2^n-1)
describes a "Mersenne prime," then the matching "perfect
number" is equal to:
2 ^ (n-1) * ( 2^n -
1)
where n = 2, 3, 5, 7, 13, 17, 19, 31 or other
"mersenne" exponents. All of the known "Mersenne" exponents
are listed in one of the sections above.
Can we prove that every "Mersenne Prime
Number" can generate a corresponding Perfect number? Yes, we can.
Can we prove that every possible
"perfect" number can be generated from a "Mersenne" prime?
No, we cannot. (I'm hoping that someday someone will find an ODD
"perfect" number, and an odd "perfect" number can NOT come
from a "Mersenne" prime.)
List of Known Mersenne Prime Numbers
#
|
2p-1
|
Digits
|
Date
Discovered
|
Discovered
By
|
Method
/ Hardware
|
Perfect
Number
|
22-1
|
c. 500 BCE
|
Ancient Greek mathematicians
|
||||
23-1
|
c. 500 BCE
|
Ancient Greek mathematicians
|
||||
25-1
|
c. 275 BCE
|
Ancient Greek mathematicians
|
||||
27-1
|
c. 275 BCE
|
Ancient Greek mathematicians
|
||||
213-1
|
1456
|
Anonymous
|
trial division
|
|||
217-1
|
1588
|
Pietro Cataldi
|
trial division
|
|||
219-1
|
1588
|
Pietro Cataldi
|
trial division
|
|||
231-1
|
1772
|
Leonhard Euler
|
Enhanced trial division
|
|||
261-1
|
1883
|
Ivan Mikheevich Pervushin
|
Lucas sequences
|
|||
289-1
|
1911 Jun
|
R. E. Powers
|
Lucas sequences
|
|||
2107-1
|
1914 Jun 11
|
R. E. Powers
|
Lucas sequences
|
|||
2127-1
|
1876 Jan 10
|
Édouard Lucas
|
Lucas sequences
|
|||
2521-1
|
1952 Jan 30
|
Raphael M. Robinson
|
L-L / SWAC
|
|||
2607-1
|
1952 Jan 30
|
Raphael M. Robinson
|
L-L / SWAC
|
|||
21,279-1
|
1952 Jun 25
|
Raphael M. Robinson
|
L-L / SWAC
|
|||
22,203-1
|
1952 Oct 07
|
Raphael M. Robinson
|
L-L / SWAC
|
|||
22,281-1
|
1952 Oct 09
|
Raphael M. Robinson
|
L-L / SWAC
|
|||
23,217-1
|
1957 Sep 08
|
Hans Riesel
|
L-L / BESK
|
|||
24,253-1
|
1961 Nov 03
|
Alexander Hurwitz
|
L-L / IBM 7090
|
|||
24,423-1
|
1961 Nov 03
|
Alexander Hurwitz
|
L-L / IBM 7090
|
|||
29,689-1
|
1963 May 11
|
Donald B. Gillies
|
L-L / ILLIAC II
|
|||
29,941-1
|
1963 May 16
|
Donald B. Gillies
|
L-L / ILLIAC II
|
|||
211,213-1
|
1963 Jun 02
|
Donald B. Gillies
|
L-L / ILLIAC II
|
|||
219,937-1
|
1971 Mar 04
|
Bryant Tuckerman
|
L-L / IBM 360/91
|
|||
221,701-1
|
1978 Oct 30
|
Landon Curt Noll & Laura
Nickel
|
L-L / CDC Cyber 174
|
|||
223,209-1
|
1979 Feb 09
|
Landon Curt Noll
|
L-L / CDC Cyber 174
|
|||
244,497-1
|
1979 Apr 08
|
Harry Lewis Nelson & David
Slowinski
|
L-L / Cray 1
|
|||
286,243-1
|
1982 Sep 25
|
David Slowinski
|
L-L / Cray 1
|
|||
2110,503-1
|
1988 Jan 28
|
Walter Colquitt & Luke Welsh
|
L-L / NEC SX-2
|
|||
2132,049-1
|
1983 Sep 19
|
David Slowinski
|
L-L / Cray X-MP
|
|||
2216,091-1
|
1985 Sep 01
|
David Slowinski
|
L-L / Cray X-MP/24
|
|||
2756,839-1
|
1992 Feb 19
|
David Slowinski & Paul Gage
|
L-L / Maple on Harwell Lab Cray-2
|
|||
2859,433-1
|
1994 Jan 04
|
David Slowinski & Paul Gage
|
L-L / Cray C90
|
|||
21,257,787-1
|
1996 Sep 03
|
David Slowinski & Paul Gage
|
L-L / Cray T94
|
|||
21,398,269-1
|
GIMPS / Joel Armengaud
|
L-L / Prime95 on 90 MHz Pentium PC
|
||||
22,976,221-1
|
GIMPS / Gordon Spence
|
L-L / Prime95 on 100 MHz Pentium
PC
|
||||
23,021,377-1
|
GIMPS / Roland Clarkson
|
L-L / Prime95 on 200 MHz Pentium
PC
|
||||
26,972,593-1
|
GIMPS / Nayan Hajratwala
|
L-L / Prime95 on 350 MHz Pentium
II IBM Aptiva
|
||||
213,466,917-1
|
GIMPS / Michael Cameron
|
L-L / Prime95 on 800 MHz Athlon
Thunderbird
|
||||
220,996,011-1
|
GIMPS / Michael Shafer
|
L-L / Prime95 on 2 GHz Dell
Dimension
|
||||
224,036,583-1
|
GIMPS / Josh Findley
|
L-L / Prime95 on 2.4 GHz Pentium 4
PC
|
||||
225,964,951-1
|
GIMPS / Martin Nowak
|
L-L / Prime95 on 2.4 GHz Pentium 4
PC
|
||||
230,402,457-1
|
GIMPS / Curtis Cooper & Steven
Boone
|
L-L / Prime95 on 2 GHz Pentium 4
PC
|
||||
232,582,657-1
|
GIMPS / Curtis Cooper & Steven
Boone
|
L-L / Prime95 on 3 GHz Pentium 4
PC
|
||||
237,156,667-1
|
GIMPS / Hans-Michael Elvenich
|
L-L / Prime95 on 2.83 GHz Core 2
Duo PC
|
||||
242,643,801-1
|
GIMPS / Odd M. Strindmo
|
L-L / Prime95 on 3 GHz Core 2 PC
|
||||
243,112,609-1
|
GIMPS / Edson Smith
|
L-L / Prime95 on Dell Optiplex 745
|
||||
257,885,161-1
|
GIMPS / Curtis Cooper
|
L-L / Prime95 on Intel Core2 Duo
E8400 @ 3.00GHz
|
||||
274,207,281-1
|
GIMPS / Curtis Cooper
|
L-L / Prime95 on Intel i7-4790 @
3.60GHz
|
Đăng ký:
Bài đăng (Atom)